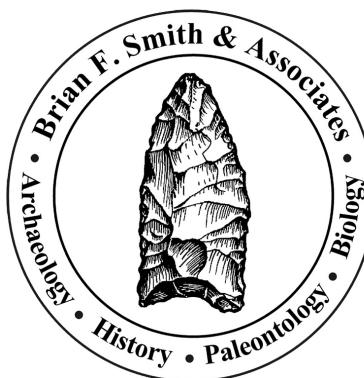


PALEONTOLOGICAL ASSESSMENT FOR THE LAKESHORE DRIVE PROJECT

CITY OF LAKE ELSINORE, RIVERSIDE COUNTY, CALIFORNIA

APNs 379-230-001 and -002

Prepared for:


EPD Solutions
2355 Main Street, Suite 100
Irvine, California 92614

Submitted to:

City of Lake Elsinore
Community Development Department
Planning Division
130 South Main Street
Lake Elsinore, California 92530

Prepared by:

Brian F. Smith and Associates, Inc.
14010 Poway Road, Suite A
Poway, California 92064

July 6, 2022

Paleontological Database Information

Author: Todd A. Wirths, M.S., Senior Paleontologist, California Professional Geologist No. 7588

Consulting Firm: Brian F. Smith and Associates, Inc.
14010 Poway Road, Suite A
Poway, California 92064
(858) 679-8218

Report Date: July 6, 2022

Report Title: Paleontological Assessment for the Lakeshore Drive Project,
City of Lake Elsinore, Riverside County, California
(APNs 379-230-001 and -002)

Prepared for: EPD Solutions
2355 Main Street, Suite 100
Irvine, California 92614

Submitted to: City of Lake Elsinore
Community Development Department, Planning Division
130 South Main Street
Lake Elsinore, California 92530

Prepared by: Brian F. Smith and Associates, Inc.
14010 Poway Road, Suite A
Poway, California 92064

USGS Quadrangle: Projected Section 35, Township 5 South, Range 5 West, *Lake Elsinore and Alberhill, California* 7.5' topographic quadrangle, San Bernardino Baseline and Meridian.

Study Area: 10 acres

Key Words: Paleontological assessment; Holocene and Pleistocene alluvial deposits; monitoring not recommended; City of Lake Elsinore.

Table of Contents

<u>Section</u>		<u>Page</u>
I. INTRODUCTION AND LOCATION.....		1
II. REGULATORY SETTING		1
<i>State of California</i>		1
<i>City of Lake Elsinore</i>		4
III. GEOLOGY		5
IV. PALEONTOLOGICAL RESOURCES.....		5
<i>Definition</i>		5
<i>Fossil Locality Search</i>		5
V. PALEONTOLOGICAL SENSITIVITY		8
<i>Overview</i>		8
<i>Professional Standards</i>		9
<i>Paleontological Sensitivity Assessment</i>		9
VI. CONCLUSION AND RECOMMENDATIONS		11
<i>Paleontological Monitoring and Recovery Plan</i>		11
VII. CERTIFICATION.....		12
VIII. REFERENCES.....		12

Appendices

Appendix A – Qualifications of Key Personnel

Appendix B – Paleontological Records Search

List of Figures

<u>Figure</u>		<u>Page</u>
Figure 1	General Location Map	2
Figure 2	Project Location Map.....	3
Figure 3A	Geologic Map.....	6
Figure 3B	Geologic Map Key	7
Figure 4	Paleontological Sensitivity Map	10

I. INTRODUCTION AND LOCATION

A paleontological resource assessment has been completed for the approximately 10-acre Lakeshore Drive Project in the city of Lake Elsinore, Riverside County, California (Figure 1). The project is within Assessor's Parcel Numbers (APNs) 379-230-001 and -002 and is located southeast of the intersection of Machado Street and Lakeshore Drive. On the U.S. Geological Survey 7.5-minute, 1:24,000-scale *Lake Elsinore and Alberhill, California* topographic quadrangle maps, the project is located within projected Section 35, in Township 5 South, Range 5 West, in the San Bernardino Baseline and Meridian (Figure 2). The project proposes to construct a residential community consisting of duplexes, a recreation center, a park, internal circulation, landscaping, and other infrastructure. An excavation depth of approximately three feet below the existing grade is estimated to accomplish the project.

As the lead agency, the City of Lake Elsinore has required the preparation of a paleontological assessment to evaluate the project's potential to yield paleontological resources. The paleontological assessment of the project included a review of paleontological literature and fossil locality records in the area; a review of the underlying geology; and recommendations to mitigate impacts to potential paleontological resources, if necessary.

II. REGULATORY SETTING

The California Environmental Quality Act (CEQA), which is patterned after the National Environmental Policy Act, is the overriding environmental regulation that sets the requirement for protecting California's paleontological resources. CEQA mandates that governing permitting agencies (lead agencies) set their own guidelines for the protection of nonrenewable paleontological resources under their jurisdiction.

State of California

Under "Guidelines for Implementation of the California Environmental Quality Act," as amended in December 2018 (California Code of Regulations [CCR] Title 14, Division 6, Chapter 3, Sections 15000 et seq.), procedures define the types of activities, persons, and public agencies required to comply with CEQA. Section 15063 of the CCR provides a process by which a lead agency may review a project's potential impact to the environment, whether the impacts are significant, and provide recommendations, if necessary.

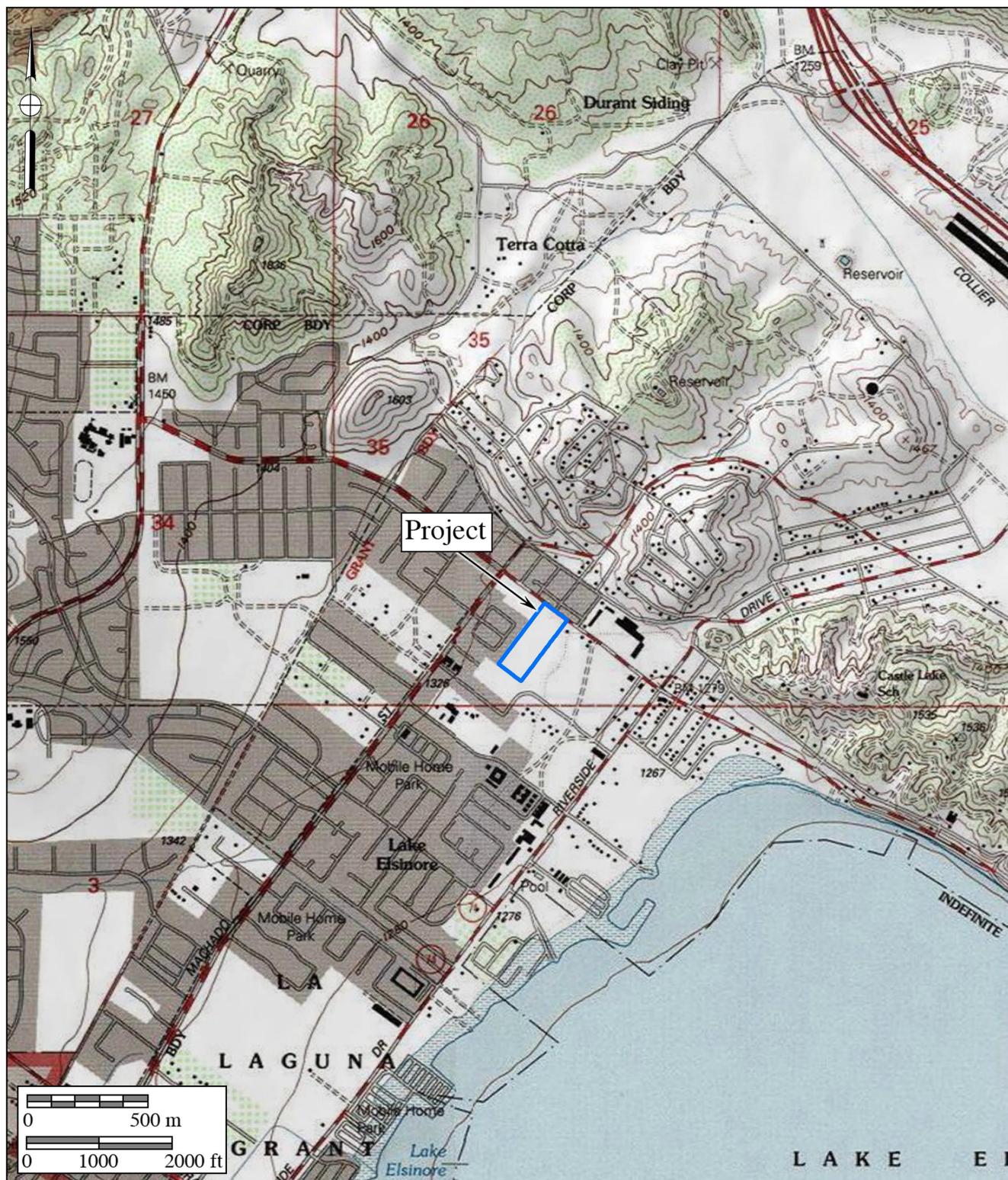

In CEQA's Environmental Checklist Form, one of the questions to answer is, "Would the project directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?" (Appendix G, Section VII, Part f). This is to ensure compliance with California Public Resources Code Section 5097.5, the law by which protects nonrenewable resources including fossils, which is paraphrased below:

Figure 1
General Location Map
The Lakeshore Drive Project

DeLorme (1:250,000)

Figure 2
Project Location Map

The Lakeshore Drive Project

USGS Lake Elsinore and Alberhill Quadrangles (7.5-minute series)

- a) A person shall not knowingly and willfully excavate upon, or remove, destroy, injure or deface any historic or prehistoric ruins, burial grounds, archaeological or vertebrate paleontological site, including fossilized footprints, inscriptions made by human agency, rock art, or any other archaeological, paleontological or historical feature, situated on public lands, except with the express permission of the public agency having jurisdiction over such lands.
- b) As used in this section, “public lands” means lands owned by, or under the jurisdiction of, the state, or any city, county, district, authority, or public corporation, or any agency thereof.
- c) A violation of this section is a misdemeanor.

City of Lake Elsinore

Paleontological resources are outlined in Chapter 4.6.7 of the City of Lake Elsinore General Plan, which was adopted on December 13, 2011 (City of Lake Elsinore 2011a). In the General Plan, mapped geologic areas are delineated according to their potential to yield fossils and are presented as Figure 4.6, “Paleontological Resources.” This map figure is copied from the County of Riverside’s interactive, online paleontological sensitivity mapping database, and borrows the paleontological sensitivity rating system as applied to geologic formations (County of Riverside Land Information System 2022).

Goal 8 of the General Plan, “Preserve paleontological resources occurring within the City,” states the following:

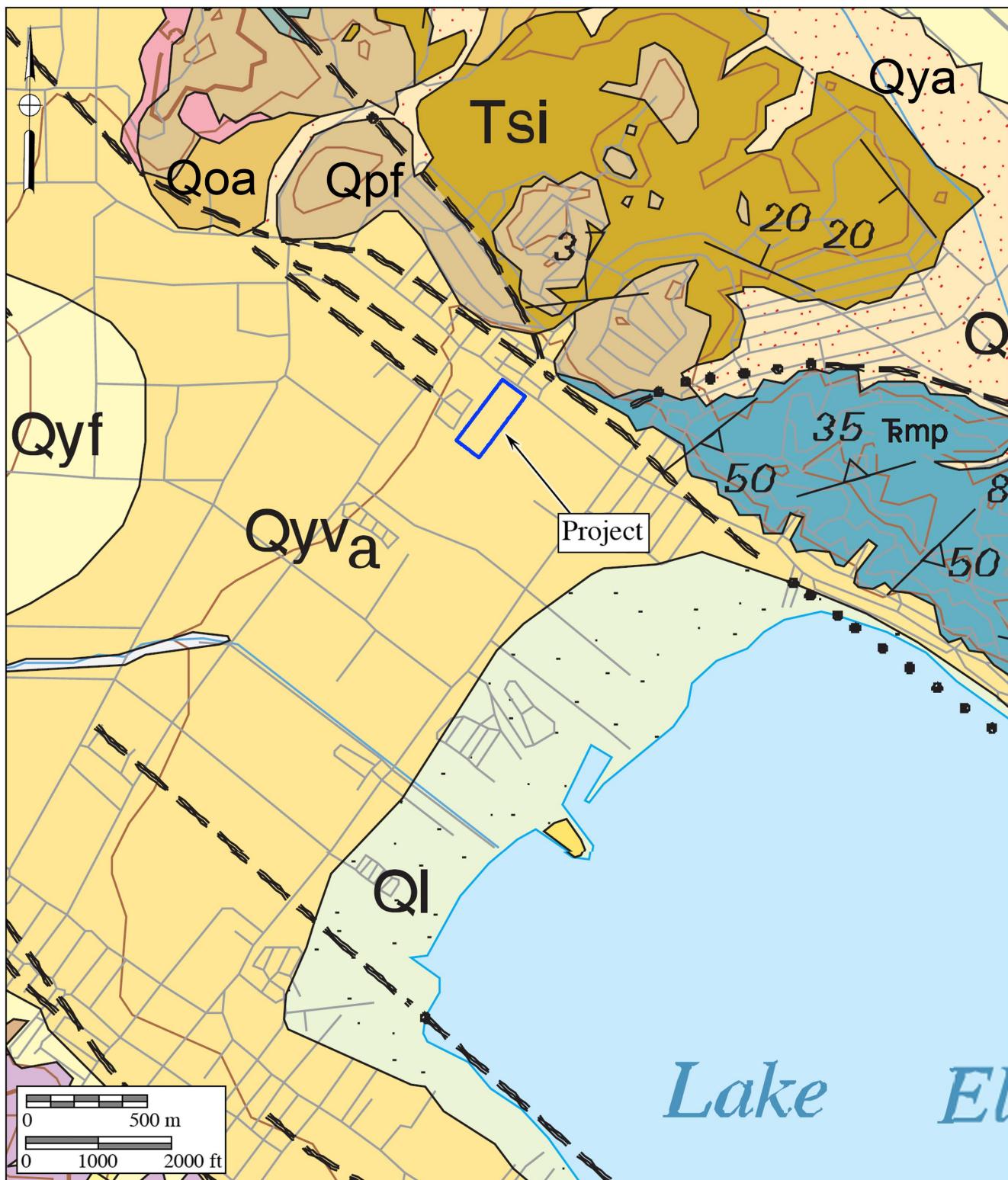
... development in areas delineated as “High” or “Undetermined” potential sensitivity for paleontological resources [as shown on General Plan Figure 4.6], require the project applicant to hire a certified paleontologist, who must perform a literature search and/or survey and apply the relevant treatment for the site as recommended by the Society for Vertebrate Paleontology. (City of Lake Elsinore 2011a: 4-63)

The City of Lake Elsinore Community Development Department will conduct an environmental review of a project and implement appropriate paleontological mitigation procedures, if necessary, prior to the project’s approval.

The City of Lake Elsinore General Plan Update (City of Lake Elsinore 2011b) presents the City Paleontological Resource Map as Figure 3.2-3 and further defines paleontological sensitivity ratings, as applied to geological formations, using definitions from the County of Riverside sensitivity system as a baseline reference (City of Lake Elsinore 2011b: 3.2-23). Paleontological goals, policies, and implementation programs stated in the General Plan Update are unchanged from those stated in the General Plan.

III. GEOLOGY

The project lies within the Elsinore Fault Zone, which is locally comprised of several active fault segments (Morton and Miller 2006; Morton and Weber 2003; Weber 1977). The Elsinore Fault Zone forms a complex series of pull-apart basins, the largest and most pronounced of which forms a flat-floored closed depression called La Laguna, which is partly filled by Lake Elsinore (Figures 3A and 3B, after Morton and Miller 2006). As shown on Figures 3A and 3B, the project is underlain by Holocene and late Pleistocene-aged young alluvial-valley deposits, composed of unconsolidated sand, silt, and clay-bearing alluvium (amber areas labeled “Qyva” on Figures 3A and 3B). These deposits may interfinger with Holocene Lake Elsinore lacustrine sediments in the subsurface. The hills to the northeast of Lakeshore Drive are composed of the Paleocene Silverado Formation (“Tsi” on Figures 3A and 3B) that are capped by exposures assigned to the middle Pleistocene fanglomerate member of the Pauba Formation (“Qpf” on Figures 3A and 3B). The Pauba and Silverado formations are not mapped within the project, but may underlie the young alluvial-valley deposits at the project’s surface at an unknown depth.


IV. PALEONTOLOGICAL RESOURCES

Definition

Paleontological resources are the remains of prehistoric life that have been preserved in geologic strata. These remains are called fossils and include bones, shells, teeth, and plant remains (including their impressions, casts, and molds) in the sedimentary matrix, as well as trace fossils such as footprints and burrows. Fossils are considered older than 5,000 years of age (Society of Vertebrate Paleontology 2010) but may include younger remains (subfossils) when viewed in the context of local extinction of the organism or habitat, for example. Fossils are considered a nonrenewable resource under state and local guidelines (Section II of this report).

Fossil Locality Search

A prior paleontological literature review and collections and records search was performed for the North Point Lake Elsinore Project by the Los Angeles County Museum of Natural History (LACM; Bell 2021 [Appendix B]). The North Point Lake Elsinore Project is located approximately five and a half miles southeast of the current project. According to the records search (Bell 2021), the closest known fossil locality to the current project is less than four miles southeast in the vicinity of the San Jacinto River outlet, consisting of the remains of a Pleistocene camel (LACM 6059). Prior record searches by the LACM for other nearby projects have indicated a lacustrine origin for locality LACM 6059 (BFSA archives). The other fossil localities reported by Bell (2021) are too far away from the current project to be of relevance.

Figure 3A
Geologic Map

The Lakeshore Drive Project

Geology after Morton and Miller (2006)

Description of Map Units

Holocene

	Very young lacustrine deposits (late Holocene)
--	--

Holocene to late Pleistocene

	Young alluvial-fan deposits (Holocene and late Pleistocene)
	Young alluvial-valley deposits (Holocene and late Pleistocene)
	Young axial-channel deposits (Holocene and late Pleistocene)

Late to middle Pleistocene

	Old axial-channel deposits (Late to middle Pleistocene)
--	---

Pleistocene

	Fanglomerate member, Pauba Formation (Pleistocene)
--	--

Paleocene

	Silverado Formation (Paleocene)
--	---------------------------------

Mesozoic metamorphic rocks

	Phyllite (Mesozoic)
--	---------------------

Figure 3B

Geologic Map Key

The Lakeshore Drive Project

Geology after Morton and Miller (2006)

Recent paleontological monitoring for the construction of a one mile-long percolation basin for the Summerly Homes at Lake Elsinore Project in 2017 yielded a trove of late Pleistocene-age fossils (N. Scott Rugh, personal communication 2022). This project is located approximately four to five miles southeast of the Lakeshore Drive Project. Species recovered include extinct large mammals such as the Columbian mammoth, *Mammuthus columbi*, large camel *Camelops hesternus*, and the dwarf antelope *Capromeryx* sp. Still-living species include mule deer, *Odocoileus hemionus*, and bison, *Bison* sp. The small mammal fauna is typical of late “Rancholarean” faunas of western Riverside County, including: shrews (family Soricidae), brush rabbit, *Sylvilagus bachmani*, antelope ground squirrel *Ammospermophilus* sp., Botta’s pocket gopher, *Thomomys bottae*, kangaroo rat, *Dipodomys* sp., western harvest mouse, *Reithrodontomys megalotus*, deer mouse, *Peromyscus* sp., dusky-footed wood rat, *Neotoma fuscipes*, California vole, *Microtus californicus*, porcupine, *Erethizon* sp., and weasel, *Mustela* sp. Other vertebrates include a fish, three-spined stickleback, *Gasterosteus aculatus*, true, or pond frog *Rana* sp., California tree frog, *Hyla* sp., snakes (family Colubridae), lizards (family Iguanidae), ducks, *Anas* sp., and geese, *Branta* sp. Molluscan invertebrates include the freshwater mussel *Anodonta californiensis* as well as six gastropod species. These specimens are deposited at the Western Science Center in Hemet (N. Scott Rugh, personal communication 2022).

V. PALEONTOLOGICAL SENSITIVITY

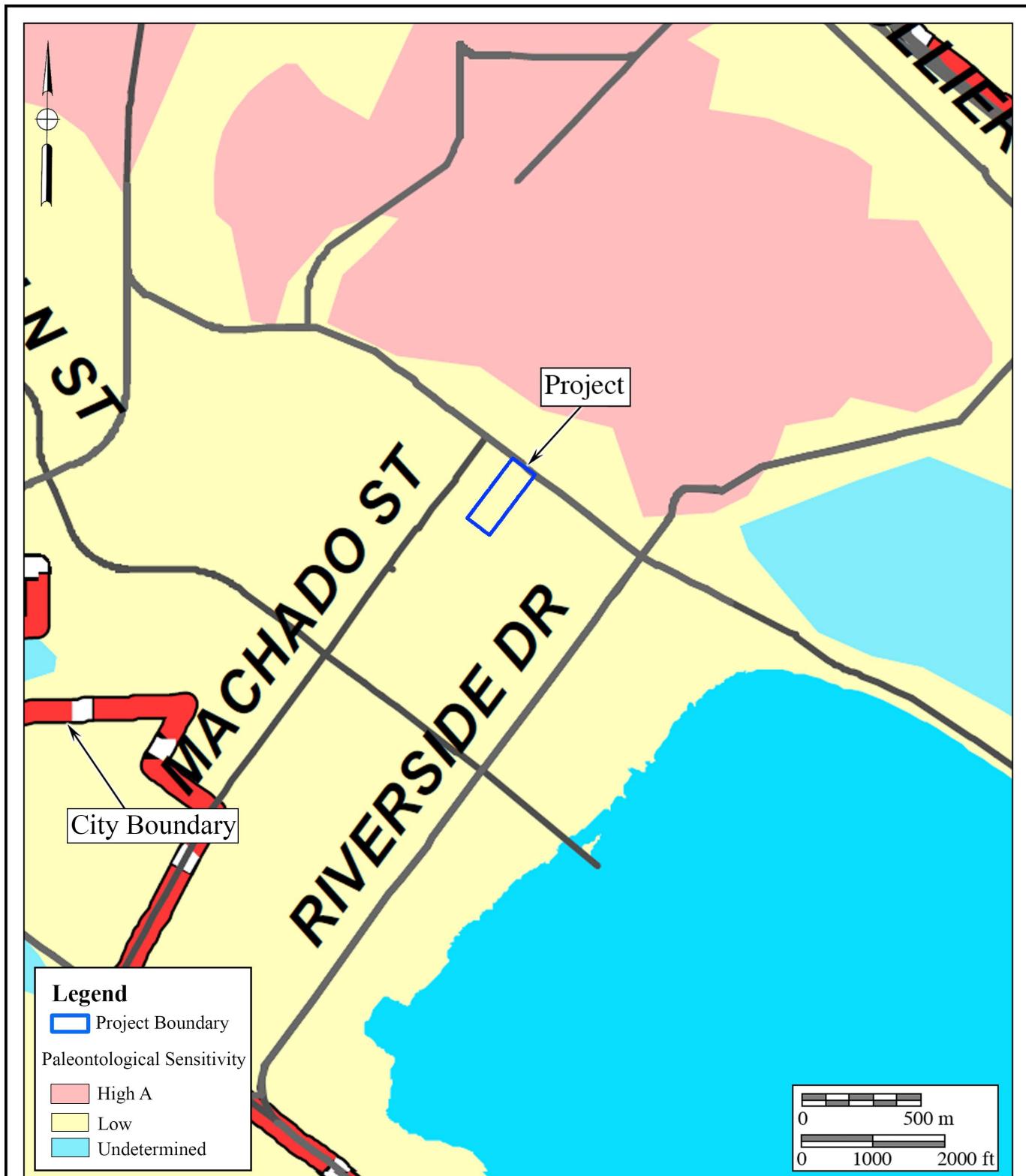
Overview

The degree of paleontological sensitivity of any particular area is based on a number of factors, including the documented presence of fossiliferous resources on a site or in nearby areas, the presence of documented fossils within a particular geologic formation or lithostratigraphic unit, and whether or not the original depositional environment of the sediments is one that might have been conducive to the accumulation of organic remains that might have become fossilized over time. Holocene alluvium is generally considered to be geologically too young to contain significant nonrenewable paleontological resources (*i.e.*, fossils), and is therefore typically assigned a low paleontological sensitivity. Pleistocene (greater than 11,700 years old) alluvial and alluvial fan deposits in the Inland Empire, however, often yield important Ice Age terrestrial vertebrate fossils, such as extinct mammoths, mastodons, giant ground sloths, extinct species of horse, bison, camel, saber-toothed cats, and others (Jefferson 1991). These Pleistocene sediments are therefore accorded a high paleontological resource sensitivity. Notably, the Diamond Valley Lake fauna, a large vertebrate fossil assemblage located about 13 miles east of the project at what is now Diamond Valley Lake, represent a trove of late Pleistocene animal remains buried partly in lacustrine (lake) deposits (Springer et al. 2009), a similar environmental setting to Lake Elsinore today. The assemblage included thousands of bones from dozens of vertebrates, including the bones from large individuals of mastodon, three species of giant

ground sloth, and a wealth of pulmonate (land and freshwater) snails and paleobotanical materials.

The Pauba Formation, as discussed in Section IV, has a proven paleontological record (Hohman et al. 2020; Pajak et al. 1996; Reynolds and Reynolds 1990). In the greater Wildomar, Murrieta, and Temecula areas, this formation has produced abundant suites of fossil terrestrial mammals, including various reptiles and amphibians, shrew, various rodents, rabbit, giant ground sloth, saber-tooth cat, pronghorn antelope, tapir, horse, camel, mastodon, mammoth, deer, and llama, and therefore has a high paleontological resource sensitivity. The marine facies of the Silverado Formation locally yields fossils of marine molluscan faunas (Engel 1959; Schoellhamer et al. 1981), and also has a high paleontological resource sensitivity.

Professional Standards


The Society of Vertebrate Paleontology (2010) has drafted guidelines that include four categories of paleontological sensitivity for geologic units (formations) that might be impacted by a proposed project, as listed below:

- **High Potential:** Rock units from which vertebrate or significant invertebrate, plant, or trace fossils have been recovered.
- **Undetermined Potential:** Rock units for which little information is available concerning their paleontological content, geologic age, and depositional environment, and that further study is needed to determine the potential of the rock unit.
- **Low Potential:** Rock units that are poorly represented by fossil specimens in institutional collections or based upon a general scientific consensus that only preserve fossils in rare circumstances.
- **No Potential:** Rock units that have no potential to contain significant paleontological resources, such as high-grade metamorphic rocks and plutonic igneous rocks.

Using these criteria, based the age of the geologic formation mapped at the project, the fossil record of the formation, and the distribution of nearby fossil localities, the young alluvial-valley deposits at the project can be assigned an undetermined potential to yield significant paleontological resources.

Paleontological Sensitivity Assessment

On Figure 4.6, “Paleontological Resources,” from the City of Lake Elsinore General Plan (City of Lake Elsinore 2011a), the project plots within an area designated as having a “Low” potential paleontological resource sensitivity, as shown in the area colored yellow on Figure 4. The areas assigned a “Low” sensitivity correlate to the Holocene and late Pleistocene-aged young alluvial-valley deposits. The Environmental Impact Report (EIR) for the General Plan Update defines areas assigned a Low sensitivity as:

Figure 4
Paleontological Sensitivity Map

The Lakeshore Drive Project

After City of Lake Elsinore General Plan (2011a)

This category encompasses lands for which previous field surveys and documentation demonstrates as having a low potential for containing significant paleontological resources subject to adverse impacts. The mapping of low potential was determined based on actual documentation, and was not generalized to cover all areas of a particular rock unit on a geologic map. For instance, an area mapped as “Qal” may actually be a thin surficial layer of non-fossiliferous sediments which covers fossil-rich Pleistocene sediments. Also, an area mapped as granite may be covered by a Pleistocene soil horizon that contains fossils. Thus, actual sensitivity must be ultimately determined by both a records search and a field inspection by a paleontologist, and those areas designated as having a low potential include those for which field inspections have been completed. (City of Lake Elsinore 2011b)

VI. CONCLUSIONS AND RECOMMENDATIONS

The surficial Holocene alluvial deposits covering the project are generally too young to yield fossils, and the proposed excavation is limited to three feet deep. Therefore, paleontological monitoring at the project is not recommended. However, if the excavation depth for the proposed project is modified to extend beyond five feet, part-time monitoring is recommended on an as-needed basis, since older deposits of Pleistocene age may underlie the Holocene surficial deposits at an unknown depth. Monitoring of any disturbed deposits and artificial fill that may be present is not warranted.

If the proposed project is modified to excavate below five feet deep below the surface, a Paleontological Resource Impact Mitigation Program (PRIMP) report that outlines a proposed monitoring plan at the project is recommended for submittal and approval by the City of Lake Elsinore. The PRIMP should be based on the findings stated above, and should contain the following elements:

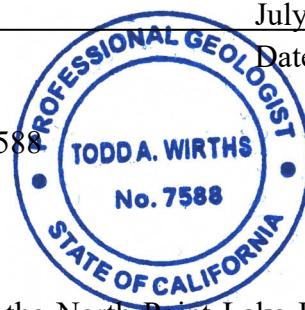
1. Monitoring of mass grading and excavation activities shall be performed by a qualified paleontologist or paleontological monitor. Monitoring will be performed starting at a depth of five feet in undisturbed alluvial deposits on a part-time basis, at the discretion of the project paleontologist. Monitoring may be increased based on changes of lithology, geologic formation, or the discovery of fossils. If fossils deemed significant by the project paleontologist are discovered, monitoring should be increased to full time.
2. The monitor must be empowered to temporarily halt or divert equipment to allow removal of fossils in a timely manner. Monitoring may be reduced if the potentially fossiliferous units are not present in the subsurface, or, if present, are determined upon exposure and examination by qualified paleontological personnel to have low

potential to contain fossil resources. The monitor shall notify the project paleontologist, who will then notify the concerned parties of the discovery.

3. Recovered specimens will be prepared to a point of identification and permanent preservation (not display), including screen-washing sediments to recover small invertebrates and vertebrates.
4. Recovered specimens will be identified and curated into a professional, accredited public museum repository with a commitment to archival conservation and permanent retrievable storage (e.g., the Western Science Center). The paleontological program should include a written repository agreement prior to the initiation of monitoring activities. Prior to curation, the lead agency will be consulted on the repository/museum to receive the fossil material.
5. A final report of findings and significance will be prepared, including lists of all fossils recovered and necessary maps and graphics to accurately record their original location(s). The report, when submitted to, and accepted by, the appropriate lead agency, will signify satisfactory completion of the project program to reduce impacts to any potential nonrenewable paleontological resources (*i.e.*, fossils) that might have been lost or otherwise adversely affected without such a program in place.

VII. CERTIFICATION

I hereby certify that the statements furnished above and in the attached exhibits present the data and information required for this paleontological report, and that the facts, statements, and information presented are true and correct to the best of my knowledge and belief, and have been compiled in accordance with CEQA criteria.


July 6, 2022

Date

Todd A. Wirths

Senior Paleontologist

California Professional Geologist No. 7588

VIII. REFERENCES

Bell, A. 2021. Paleontological resources for the North Point Lake Elsinore Project (21-245). Letter report for Brian F. Smith and Associates, Inc., Poway, California, by Natural History Museum of Los Angeles County, Los Angeles, California. (attached).

City of Lake Elsinore. 2011a. General Plan. <http://www.lake-elsinore.org/city-hall/city-departments/community-development/planning/lake-elsinore-general-plan>. Chapter 4:

Resource Protection and Preservation.

City of Lake Elsinore. 2011b. General Plan Update, Final Recirculated Program EIR, SCH #2005121019. <http://www.lake-elsinore.org/city-hall/city-departments/community-development/planning/lake-elsinore-general-plan/general-plan-certified-eir>. Section 3.2: Cultural and Paleontological Resources.

County of Riverside Land Information System. 2022. Map My County; Paleontological Sensitivity: https://gis1.countyofriverside.us/Html5Viewer/?viewer=MMC_Public.

Engel, R. 1959. Geology of the Lake Elsinore quadrangle, California. Geology and mineral deposits of the Lake Elsinore quadrangle, California: State of California Dept. of Natural Resources, Division of Mines, Bulletin 146, p. 9-58, pl. 1-3.

Hohman, C.J., Scott, E., and Dooley, A.C. 2020. Shifting faunas and changing climate: new remains of middle to late Pleistocene *Equus* from southwestern Riverside County, California: Abstract, in The Society of Vertebrate Paleontology 80th Annual Meeting · Virtual 2020, Conference Program.

Jefferson, G.T. 1991. A catalogue of late Quaternary vertebrates from California: Part two, mammals. Natural History Museum of Los Angeles County, Technical Reports, no. 7: i-v + 1-129.

Morton, D.M. and Miller, F.K. 2006. Geologic Map of the San Bernardino and Santa Ana 30' x 60' quadrangles, California: U.S. Geological Survey Open-File Report 06-1217, scale 1:100,000.

Morton, D.M., and Weber, F.H. 2003. Preliminary geologic map of the Elsinore 7.5' quadrangle, Riverside County, California: U. S. Geological Survey Open-File Report 03-281, version 1.0, scale 1:24,000.

Pajak, A.F., Scott, E., and Bell, C.J. 1996. A review of the biostratigraphy of Pliocene and Pleistocene sediments in the Elsinore Fault zone, Riverside County, California. *PaleoBios*, 17:2-4, pp. 28-49.

Reynolds, R.E., and Reynolds, R.L. 1990. Irvingtonian? faunas from the Pauba Formation, Temecula, Riverside County, California. In, J. Reynolds, compiler, Abstracts of proceedings, 1990 Mojave Desert Quaternary Research Symposium, San Bernardino County Museum, Redlands, California. San Bernardino County Museum Association

Quarterly, v. XXXVII, no. 2, p. 37.

Schoellhamer, J.E., Vedder, J.G., Yerkes, R.F., and Kinney, D.M. 1981. Geology of the northern Santa Ana Mountains, California. U.S. Geological Survey Prof. Paper 420-D.

Society of Vertebrate Paleontology. 2010. Standard procedures for the assessment and mitigation of adverse impacts to paleontological resources; by the SVP Impact Mitigation Guidelines Revision Committee: http://vertpaleo.org/Membership/Member-Ethics/SVP_Impact_Mitigation_Guidelines.aspx.

Springer, K.B., Scott, E.G., Sagebiel, J.C., and Murray, L.K. 2009. The Diamond Valley Lake local fauna: Late Pleistocene vertebrates from inland southern California. *In* Albright, L.B., III, ed., Papers on geology, vertebrate paleontology, and biostratigraphy in honor of Michael O. Woodburne. Museum of Northern Arizona Bulletin, 65: 217-235.

Weber, F.H., Jr. 1977. Seismic hazards related to geologic factors, Elsinore and Chico fault zones, northwestern Riverside County, California: California Div. of Mines and Geology Open-File Report 77-4 LA.

APPENDIX A

Qualifications of Key Personnel

Todd A. Wirths, MS, PG No. 7588

Senior Paleontologist

Brian F. Smith and Associates, Inc.
14010 Poway Road • Suite A •
Phone: (858) 679-8218 • Fax: (858) 679-9896 • E-Mail: twirths@bfsa-ca.com

Education

Master of Science, Geological Sciences, San Diego State University, California	1995
Bachelor of Arts, Earth Sciences, University of California, Santa Cruz	1992

Professional Certifications

California Professional Geologist #7588, 2003
Riverside County Approved Paleontologist
San Diego County Qualified Paleontologist
Orange County Certified Paleontologist
OSHA HAZWOPER 40-hour trained; current 8-hour annual refresher

Professional Memberships

Board member, San Diego Geological Society
San Diego Association of Geologists; past President (2012) and Vice President (2011)
South Coast Geological Society
Southern California Paleontological Society

Experience

Mr. Wirths has more than a dozen years of professional experience as a senior-level paleontologist throughout southern California. He is also a certified California Professional Geologist. At BFS, Mr. Wirths conducts on-site paleontological monitoring, trains and supervises junior staff, and performs all research and reporting duties for locations throughout Los Angeles, Ventura, San Bernardino, Riverside, Orange, San Diego, and Imperial Counties. Mr. Wirths was formerly a senior project manager conducting environmental investigations and remediation projects for petroleum hydrocarbon-impacted sites across southern California.

Selected Recent Reports

2019 *Paleontological Assessment for the 10575 Foothill Boulevard Project, City of Rancho Cucamonga, San Bernardino County, California.* Prepared for T&B Planning, Inc. Report on file at Brian F. Smith and Associates, Inc., Poway, California.

2019 *Paleontological Assessment for the MorningStar Marguerite Project, Mission Viejo, Orange County, California.* Prepared for T&B Planning. Report on file at Brian F. Smith and Associates, Inc., Poway, California.

2019 *Paleontological Monitoring Report for the Nimitz Crossing Project, City of San Diego.* Prepared for Voltaire 24, LP. Report on file at Brian F. Smith and Associates, Inc., Poway, California.

2019 *Paleontological Resource Impact Mitigation Program (PRIMP) for the Jack Rabbit Trail Logistics Center Project, City of Beaumont, Riverside County, California.* Prepared for JRT BP 1, LLC. Report on file at Brian F. Smith and Associates, Inc., Poway, California.

2020 *Paleontological Monitoring Report for the Oceanside Beachfront Resort Project, Oceanside, San California.* Prepared for S.D. Malkin Properties. Report on file at Brian F. Smith and Associates, Inc., Poway, California.

2020 *Paleontological Resource Impact Mitigation Program for the Nakase Project, Lake Forest, Orange County, San California.* Prepared for Glenn Lukos Associates, Inc. Report on file at Brian F. Smith and Associates, Inc., Poway, California.

2020 *Paleontological Resource Impact Mitigation Program for the Sunset Crossroads Project, Banning, Riverside County.* Prepared for NP Banning Industrial, LLC. Report on file at Brian F. Smith and Associates, Inc., Poway, California.

2020 *Paleontological Assessment for the Ortega Plaza Project, Lake Elsinore, Riverside County.* Prepared for Empire Design Group. Report on file at Brian F. Smith and Associates, Inc., Poway, California.

2020 *Paleontological Resource Record Search Update for the Green River Ranch III Project, Green River Ranch Specific Plan SP00-001, City of Corona, California.* Prepared for Western Realco. Report on file at Brian F. Smith and Associates, Inc., Poway, California.

2020 *Paleontological Assessment for the Cypress/Slover Industrial Center Project, City of Fontana, San Bernardino County, California.* Prepared for T&B Planning, Inc. Report on file at Brian F. Smith and Associates, Inc., Poway, California.

2020 *Paleontological Monitoring Report for the Imperial Landfill Expansion Project (Phase VI, Segment C-2), Imperial County, California.* Prepared for Republic Services, Inc. Report on file at Brian F. Smith and Associates, Inc., Poway, California.

2021 *Paleontological Assessment for the Manitou Court Logistics Center Project, City of Jurupa Valley, Riverside County, California.* Prepared for Link Industrial. Report on file at Brian F. Smith and Associates, Inc., Poway, California.

2021 *Paleontological Resource Impact Mitigation Program for the Del Oro (Tract 36852) Project, Menifee, Riverside County.* Prepared for D.R. Horton. Report on file at Brian F. Smith and Associates, Inc., Poway, California.

2021 *Paleontological Assessment for the Alessandro Corporate Center Project (Planning Case PR-2020-000519), City of Riverside, Riverside County, California.* Prepared for OZI Alessandro, LLC. Report on file at Brian F. Smith and Associates, Inc., Poway, California.

2021 *Paleontological Monitoring Report for the Boardwalk Project, La Jolla, City of San Diego.* Prepared for Project Management Advisors, Inc. Report on file at Brian F. Smith and Associates, Inc., Poway, California.

APPENDIX B

Paleontological Records Search

Natural History Museum
of Los Angeles County
900 Exposition Boulevard
Los Angeles, CA 90007

tel 213.763.DINO
www.nhm.org

Research & Collections

e-mail: paleorecords@nhm.org

September 22, 2021

Brian F. Smith and Associates, Inc.

Attn: Todd Wirths

re: Paleontological resources for the North Point Lake Elsinore Project (21-245)

Dear Todd:

I have conducted a thorough search of our paleontology collection records for the locality and specimen data for proposed development at the North Point Lake Elsinore project area as outlined on the portion of the Lake Elsinore USGS topographic quadrangle map that you sent to me via e-mail on September 15, 2021. We do not have any fossil localities that lie directly within the proposed project area, but we do have fossil localities nearby from the same sedimentary deposits that occur in the proposed project area, either at the surface or at depth.

The following table shows the closest known localities in the collection of the Natural History Museum of Los Angeles County.

Locality Number	Location	Formation	Taxa	Depth
LACM VP 6059	Overflow area of Lake Elsinore, near the outflow channel just south of E Lakeshore Dr.	Unknown formation (Pleistocene)	Camel family (Camelidae)	Unknown
LACM VP 7261	Skinner Reservoir, Auld Valley	Unknown formation (Pleistocene, arenaceous silt)	Elephant clade (Proboscidea); ungulate (Ungulata)	Unknown
LACM VP 6967 7456	Just S of Hwy 79, E of Mahon Vall Rd., Pauba Valley	Younger alluvium pebble - gravel; sand; silt & clay	Tree frog (<i>Hyla</i>); legless lizard (<i>Anniella</i>); garter snake (<i>Thamnophis</i>); pocket gopher (<i>Thomomys</i>), deer mouse (<i>Peromyscus</i>); snails (gastropoda)	Unknown, collected during augering
LACM VP 1207	Hill on east side of sewage disposal plant; 1 mile N-NW of Corona	Unknown formation (Pleistocene)	Bovidae	Unknown
LACM VP 7811	W of Orchard Park, Chino Valley	Unknown formation (eolian, tan silt; Pleistocene)	Whip snake (<i>Masticophis</i>)	9-11 feet bgs
LACM VP 7268,	Sundance	Unknown	Horse (<i>Equus</i>)	Unknown

7271

Condominiums, S of (Pleistocene)
Los Serranos Golf
Course

VP, Vertebrate Paleontology; IP, Invertebrate Paleontology; bgs, below ground surface

This records search covers only the records of the Natural History Museum of Los Angeles County ("NHMLA"). It is not intended as a paleontological assessment of the project area for the purposes of CEQA or NEPA. Potentially fossil-bearing units are present in the project area, either at the surface or in the subsurface. As such, NHMLA recommends that a full paleontological assessment of the project area be conducted by a paleontologist meeting Bureau of Land Management or Society of Vertebrate Paleontology standards.

Sincerely,

Alyssa Bell

Alyssa Bell, Ph.D.
Natural History Museum of Los Angeles County

enclosure: invoice