
Appendix K

Preliminary Hydrology Study

PRELIMINARY HYDROLOGY STUDY

FOR

Commercial Retail Lake Elsinore

**NWC Mountain St. & Lake St.,
Lake Elsinore, CA 92530**

**Prepared By:
PLUMP ENGINEERING, INC.
914 E. Katella Avenue
Anaheim, CA 92805**

This Drainage Report was prepared under my supervision:

A handwritten signature in black ink, appearing to read 'John Doe'.

By: _____

Date: 10/04/2019

INTRODUCTION

The site is located at the northwest corner of the intersection of Mountain Street and Lake Street in the City of Lake Elsinore, California 92530. The site is bounded to the west by undeveloped lot, to the north by a private property, to the east by Lake Street and to the south by Mountain Street. The general location of the site is shown on the Site Vicinity Map included on page 2 this report. The subject site is a rectangular shaped, Property size is approximately $5.630\pm$ acres with disturbed area of $5.630\pm$ acres, presently vacant and undeveloped. Ground surface cover consists of sparse amounts of native grass and weed growth located at the entire site. Overhead electrical power lines are located along the western and southern perimeter of the property. Overall site topography slopes downward to the southwest at a gradient of approximately less than 8.50 percent. There was estimated to be $20\pm$ feet of elevation differential across the overall subject site.

The preliminary site plan for the proposed development indicates that the site will be developed with a gas station with car wash and store, four (4) retail buildings, two (2) restaurant buildings with drive-thru, and five (5) trash enclosures . The new gas station canopy will be $4,089\pm$ SF, the four new retail buildings will be $13,200\pm$ SF, The two restaurants will be $5,840\pm$ SF, the car wash will be $3,159\pm$ SF, the store will be $3,400\pm$ SF, and the trash enclosures will cover $463\pm$ SF. The site plan indicates that the proposed buildings will generally be surrounded by asphaltic concrete with some areas of concrete flatwork. Several landscape planters are proposed to be located around the perimeter and within the parking lot of the site.

VICINITY MAP

HYDROLOGY ANALYSIS

Hydrologic calculations were performed in accordance with Riverside County Hydrology Manual (April 1978) guidelines. The Hydrology Manual was used to determine the existing and proposed peak flows for the, 2-year, 10-year and 25-year storms as well as the runoff volumes generated for , 2-year, 10-year and 25-year storms as well as the runoff volumes generated for 100-year storm event. Figures and Tables below are referenced to that Manual. The previous pre-development use is a vacant land with pervious cover.

RUNOFF FLOWS

Table 1: Rational Method Peak Flow

Tributary Area	DMA-1	DMA-2	Totals
Acreage, acres Pre (Post)	5.63 (2.38)	- (3.25)	5.63
Time of Concentration; Tc (min) (Post)	21 (9.5)	- (8.5)	21 9
2 year Pre- Develop. Runoff; Q ₂ (cfs)	0.03	-	0.03
2 year Post- Develop. Runoff; Q ₂ (cfs)	0.76	1.04	1.79
10 year Pre- Develop. Runoff; Q ₁₀ (cfs)	0.05	-	0.05
10 year Post- Develop. Runoff; Q ₁₀ (cfs)	1.25	1.70	2.95
25 year Pre- Develop. Runoff; Q ₂₅ (cfs)	0.06	-	0.06
25 year Post- Develop. Runoff; Q ₂₅ (cfs)	1.56	2.13	3.68

RUNOFF VOLUMES

Table 2: Estimated Storm Runoff Volumes

Tributary Area	Area 1	Area 2	Totals
Acreage (Pre Development) Acres	5.63	-	5.63
Acreage (Post Development) Acres	(2.38)	(3.25)	(5.63)
24-hr. Precipitation Depth(inches) P ₂₄ (2 yr)	2.35	2.35	-
24-hr. Precipitation Depth(inches) P ₂₄ (10 yr)	3.88	3.88	-
24-hr. Precipitation Depth(inches) P ₂₄ (100 yr)	6.25	6.25	-
CN (AMC II) Pre Development	75	-	-
CN (AMC II) Post Development	96	96	-

CN (AMC I) Pre Development	57	-	-
CN (AMC I) Post Development	78	78	-
CN (AMC III) Pre Development	88	-	-
CN (AMC III) Post Development	96	96	-
2 year Pre-Develop. Volume V_2 (Ac-ft)	0.04	-	-
2 year Post-Develop. Volume V_2 (Ac-ft)	0.137	0.188	0.325
10 year Pre-Develop. Volume V_{10} (Ac-ft)	1.228	-	-
10 year Post-Develop. Volume V_{10} (Ac-ft)	0.68	0.93	1.605
100 year Pre-Develop. Volume V_{100} (Ac-ft)	2.28	-	-
100 year Post-Develop. Volume V_{100} (Ac-ft)	1.15	1.56	2.710

CONCLUSION

The existing peak runoff from the project area was calculated to be 0.05 cfs, and 0.06 cfs for the 10-year and 25-year storms respectively. The proposed peak runoff from the project area after improvements was calculated to be 2.95 cfs, and 3.68 cfs for the 10-year and 25-year storms respectively. Therefore, outlet detention and retention will be necessary to replicate the pre-development condition in order to protect the downstream storm drains.

The existing runoff volumes from the project area was calculated to be 2.28 Ac-ft. for the 100-year storm and the proposed runoff volume from the project area after improvements was calculated to be 2.71 Ac-ft. for the 100-year storm. Post development condition is 16% higher than the pre development condition. Therefore, there are hydraulic conditions of concern (HCOC's) exist for this project. Excess amount will be retained and filtered on site via biofiltration with underdrain. HCOC Mitigation of the WQMP report will utilize accepted professional methodologies published by entities such as CASQA via biotreatment by means of biofiltration with underdrain.

Attachment A

Figures

**GINGER ROOT
WAY**

**MOUNTAIN
STREET**

**LAKE
STREET**

RUN-OFF FLOW

RUN-OFF VOLUME

Return Frequency = 2 years						
PRE-DEVELOPMENT						
Drainage Area	A (acres)	Soils Group	Coefficient C	T _c (min)	I _{1 hr} (in/hr)	Q (cfs)
1	5.630	D	0.01	21	0.492	0.03
TOTAL 0.03						
Return Frequency = 10 years						
PRE-DEVELOPMENT						
Drainage Area	A (acres)	Soils Group	Coefficient C	T _c (min)	I _{1 hr} (in/hr)	Q (cfs)
1	5.630	D	0.01	21	0.808	0.05
TOTAL 0.05						
Return Frequency = 25 years						
PRE-DEVELOPMENT						
Drainage Area	A (acres)	Soils Group	Coefficient C	T _c (min)	I _{1 hr} (in/hr)	Q (cfs)
1	5.630	D	0.01	21	1.01	0.06
TOTAL 0.06						

LEGEND:

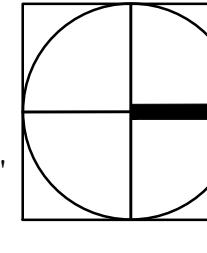
LANDSCAPE AREA

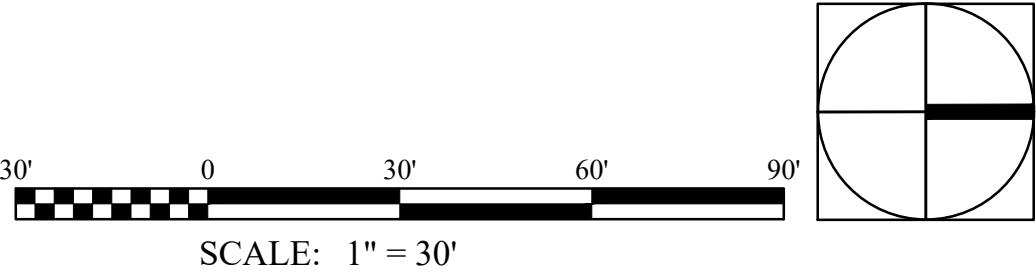
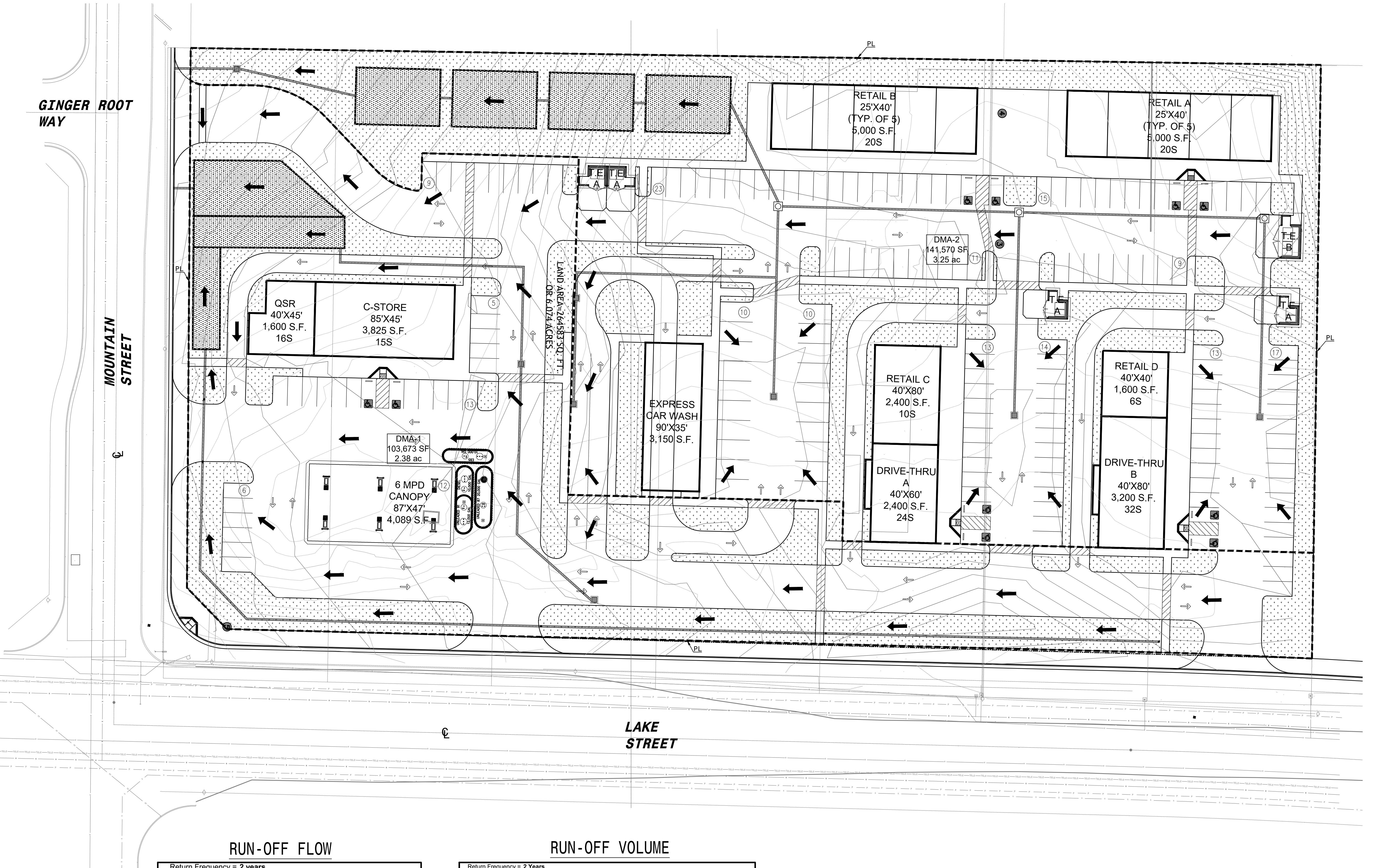
DRAINAGE FLOW DIRECTION

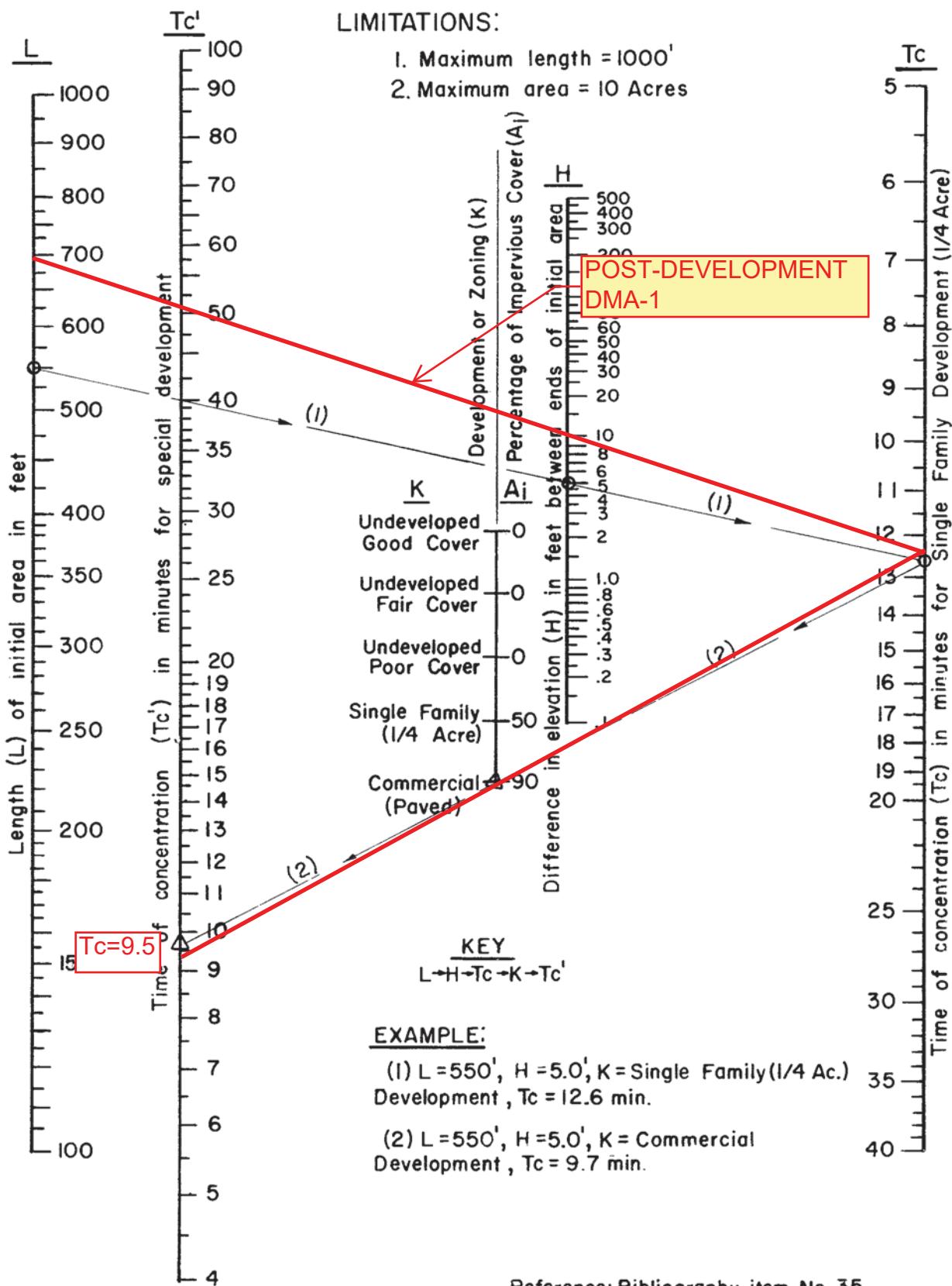
DMA BOUNDARY

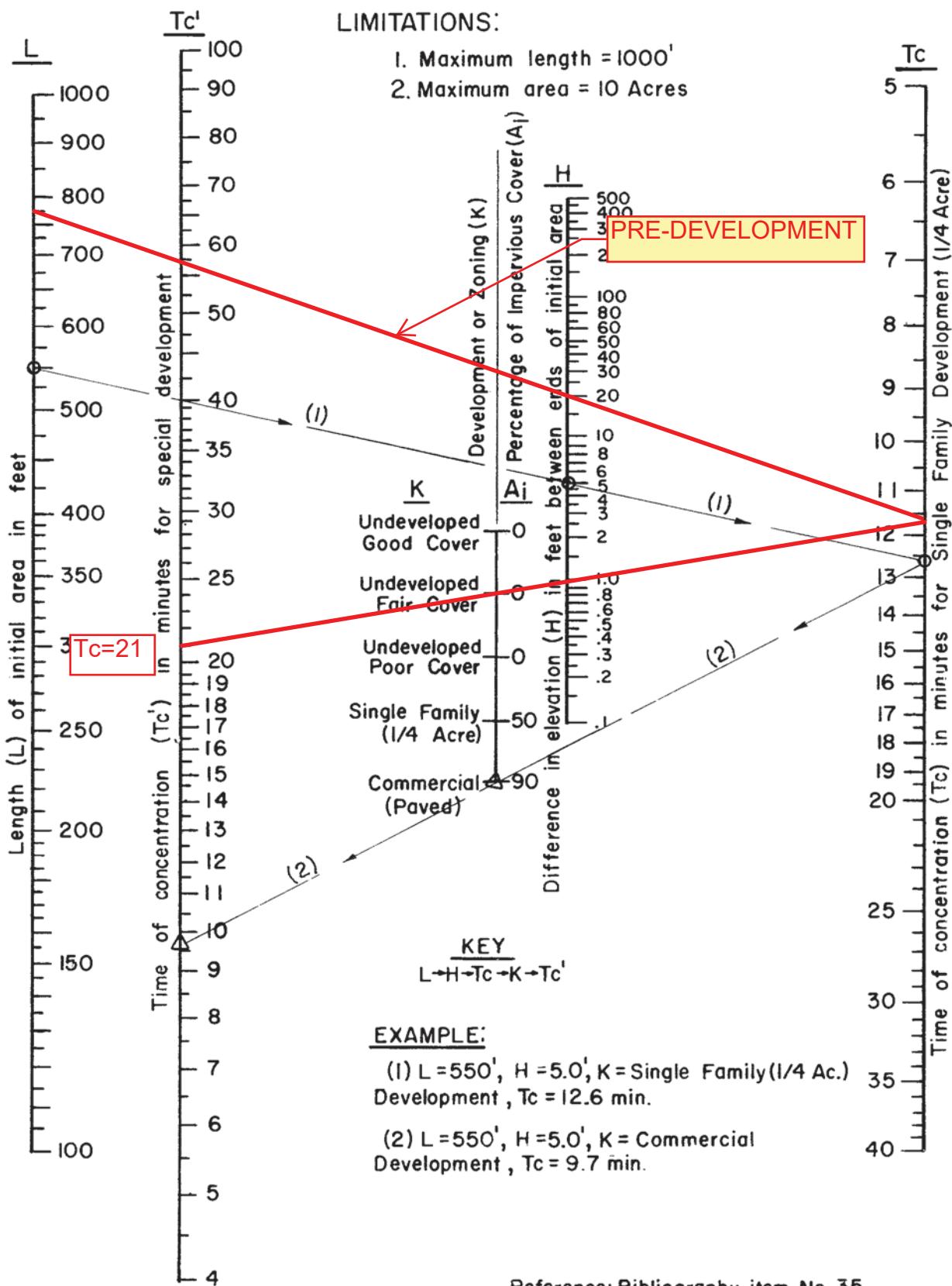
PARCEL BOUNDARY

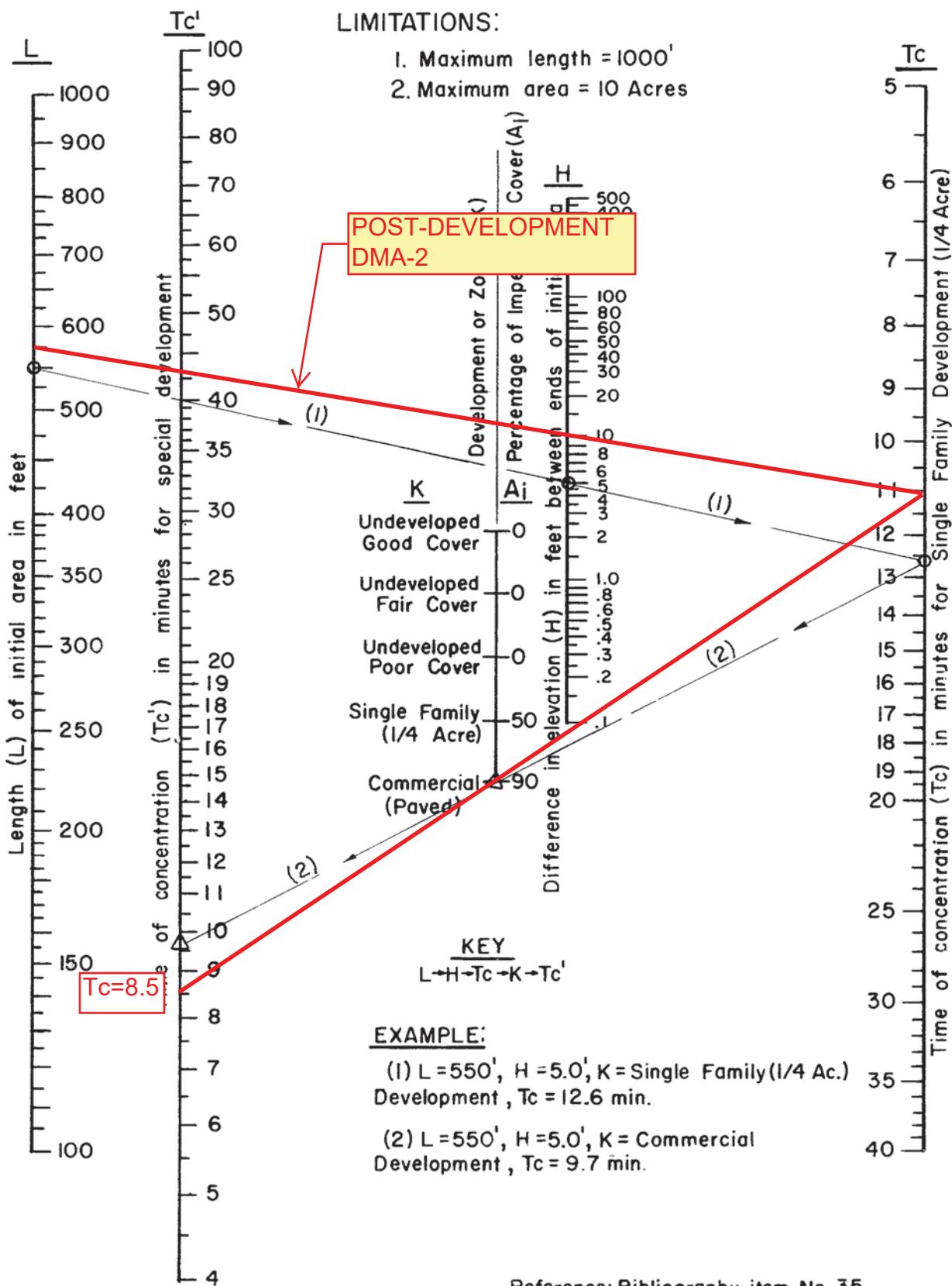
DMA-X


XX.XX SF



XX.XX ac


DMA INFORMATION


Return Frequency = 2 Years						
PRE-DEVELOPMENT						
Drainage Area	A (acres)	Soils Group	CN AMC II	CN AMC I	S	I _a
1	5.630	D	75	57	7.54	1.51
TOTAL 0.040						
Return Frequency = 10 Years						
PRE-DEVELOPMENT						
Drainage Area	A (acres)	Soils Group	CN AMC II	CN AMC III	S	I _a
1	5.630	D	75	88	1.36	0.27
TOTAL 1.228						
Return Frequency = 100 Years						
PRE-DEVELOPMENT						
Drainage Area	A (acres)	Soils Group	CN AMC II	CN AMC III	S	I _a
1	5.630	D	75	88	1.36	0.27
TOTAL 2.283						


30° 0 30° 60° 90°
SCALE: 1" = 30'

RCFC & WCD
HYDROLOGY MANUAL

TIME OF CONCENTRATION
FOR INITIAL SUBAREA

RAINFALL INTENSITY-INCHES PER HOUR

RIVERSIDE				RIVERSIDE (FOOTHILL AREAS)				RUBIDIUX				SAN JACINTO				SUN CITY				
DURATION MINUTES	FREQUENCY		DURATION MINUTES	FREQUENCY		DURATION MINUTES	FREQUENCY		DURATION MINUTES	FREQUENCY		DURATION MINUTES	FREQUENCY		DURATION MINUTES	FREQUENCY		DURATION MINUTES	FREQUENCY	
	10 YEAR	100 YEAR		10 YEAR	100 YEAR		10 YEAR	100 YEAR		10 YEAR	100 YEAR		10 YEAR	100 YEAR		10 YEAR	100 YEAR		10 YEAR	100 YEAR
5	2.75	3.92	5	3.14	4.71	5	3.18	4.71	5	2.81	4.16	5	3.25	4.85						
6	2.48	3.55	6	2.84	4.26	6	2.87	4.26	6	2.56	3.79	6	2.95	4.40						
7	2.28	3.26	7	2.61	3.91	7	2.64	3.91	7	2.37	3.51	7	2.72	4.06						
8	2.12	3.03	8	2.42	3.63	8	2.45	3.63	8	2.22	3.29	8	2.53	3.78						
9	1.99	2.84	9	2.27	3.41	9	2.30	3.41	9	2.09	3.10	9	2.38	3.55						
10	1.88	2.68	10	2.14	3.21	10	2.17	3.21	10	1.98	2.94	10	2.25	3.36						
11	1.78	2.54	11	2.03	3.05	11	2.06	3.05	11	1.89	2.80	11	2.14	3.19						
12	1.70	2.42	12	1.94	2.91	12	1.96	2.91	12	1.81	2.68	12	2.04	3.05						
13	1.62	2.32	13	1.86	2.78	13	1.88	2.78	13	1.74	2.58	13	1.96	2.92						
14	1.56	2.23	14	1.78	2.67	14	1.80	2.67	14	1.68	2.48	14	1.88	2.81						
15	1.50	2.14	15	1.71	2.57	15	1.74	2.57	15	1.62	2.40	15	1.81	2.71						
16	1.45	2.07	16	1.66	2.48	16	1.68	2.48	16	1.57	2.32	16	1.75	2.62						
17	1.40	2.00	17	1.60	2.40	17	1.62	2.40	17	1.52	2.25	17	1.70	2.54						
18	1.36	1.94	18	1.55	2.33	18	1.57	2.33	18	1.48	2.19	18	1.65	2.46						
19	1.32	1.88	19	1.51	2.26	19	1.52	2.26	19	1.44	2.13	19	1.60	2.39						
20	1.28	1.83	20	1.46	2.20	20	1.48	2.20	20	1.40	2.08	20	1.56	2.33						
22	1.22	1.74	22	1.39	2.08	22	1.41	2.08	22	1.34	1.98	22	1.48	2.21						
24	1.16	1.66	24	1.32	1.99	24	1.34	1.99	24	1.28	1.90	24	1.41	2.11						
26	1.11	1.58	26	1.27	1.90	26	1.28	1.90	26	1.23	1.82	26	1.36	2.03						
28	1.06	1.52	28	1.22	1.82	28	1.23	1.82	28	1.19	1.76	28	1.30	1.95						
30	1.02	1.46	30	1.17	1.76	30	1.19	1.76	30	1.15	1.70	30	1.26	1.88						
32	.99	1.41	32	1.13	1.70	32	1.14	1.70	32	1.11	1.64	32	1.21	1.81						
34	.96	1.37	34	1.09	1.64	34	1.11	1.64	34	1.08	1.59	34	1.18	1.76						
36	.93	1.32	36	1.06	1.59	36	1.07	1.59	36	1.05	1.55	36	1.14	1.70						
38	.90	1.29	38	1.03	1.54	38	1.04	1.54	38	1.02	1.51	38	1.11	1.66						
40	.87	1.25	40	1.00	1.50	40	1.01	1.50	40	.99	1.47	40	1.08	1.61						
45	.82	1.17	45	.94	1.41	45	.95	1.41	45	.94	1.39	45	1.01	1.51						
50	.77	1.11	50	.88	1.33	50	.90	1.33	50	.89	1.31	50	.96	1.43						
55	.73	1.05	55	.84	1.26	55	.85	1.26	55	.85	1.25	55	.91	1.36						
60	.70	1.00	60	.80	1.20	60	.81	1.20	60	.81	1.20	60	.87	1.30						
65	.67	.96	65	.77	1.15	65	.78	1.15	65	.78	1.15	65	.83	1.25						
70	.64	.92	70	.73	1.10	70	.74	1.10	70	.75	1.11	70	.80	1.20						
75	.62	.88	75	.71	1.06	75	.72	1.06	75	.72	1.07	75	.77	1.15						
80	.60	.85	80	.68	1.02	80	.69	1.02	80	.70	1.04	80	.75	1.12						
85	.58	.83	85	.66	.99	85	.67	.99	85	.68	1.01	85	.72	1.08						
SLOPE = .550				SLOPE = .550				SLOPE = .550				SLOPE = .500				SLOPE = .530				

Attachment B

Rational Method Calculations

HYDROLOGY CALCULATIONS

Runoff Flow Calculations

$$Q = CIA$$

Where :

Q = runoff in cubic feet per second (cfs) from a given area.

C= Coefficient of Runoff

I = the time-averaged rainfall intensity (inches/hour) - **1-hr Rainfall**

corresponding to the time of concentration T_c . (See Figures B-3, B-4 and D-1)

(See Hydrology Map for L, H and K factors)

A = Drainage area (acres)

[Soils Maps are at:...\\Projects\\120374\\Hydrology\\Plate C-1.42](#)

Return Frequency = 2 years

PRE-DEVELOPMENT						
Drainage Area	A (acres)	Soils Group	Coefficient C	T_c (min)	$I_{1\ hr}$ (In/hr)	Q (cfs)
1	5.630	D	0.01	21	0.492	0.03
						TOTAL 0.03

Return Frequency = 2 years

POST-DEVELOPMENT						
Drainage Area	A (acres)	Soils Group	Coefficient C	T_c (Final) (min)	$I_{1\ hr}$ (In/hr)	Q (cfs)
1	2.380	D	0.648	9.5	0.492	0.76
2	3.250	D	0.648	8.5	0.492	1.04
						TOTAL 1.79

Return Frequency = 10 years

PRE-DEVELOPMENT						
Drainage Area	A (acres)	Soils Group	Coefficient C	T_c (min)	$I_{1\ hr}$ (In/hr)	Q (cfs)
1	5.630	D	0.01	21	0.808	0.05
						TOTAL 0.05

Commercial Retail Lake Elsinore
- Lake Elsinore
Job No. 1908033
09-13-2019

HYDROLOGY CALCULATIONS

Plump Engineering, Inc.
914 E. Katella Avenue
Anaheim, CA 92805
By: NA

Return Frequency = 10 years

POST-DEVELOPMENT						
Drainage Area	A (acres)	Soils Group	Coefficient C	T _c (Final) (min)	I _{1 hr} (In/hr)	Q (cfs)
1	2.380	D	0.648	9.5	0.808	1.25
2	3.250	D	0.648	8.5	0.808	1.70
						TOTAL 2.95

Return Frequency = 25 years

PRE-DEVELOPMENT						
Drainage Area	A (acres)	Soils Group	Coefficient C	T _c (min)	I _{1 hr} (In/hr)	Q (cfs)
1	5.630	D	0.01	21	1.01	0.06
						TOTAL 0.06

Return Frequency = 25 years

POST-DEVELOPMENT						
Drainage Area	A (acres)	Soils Group	Coefficient C	T _c (Final) (min)	I _{1 hr} (In/hr)	Q (cfs)
1	2.380	D	0.648	9.5	1.01	1.56
2	3.250	D	0.648	8.5	1.01	2.13
						TOTAL 3.68

HYDROLOGY CALCULATIONS

Runoff Flow Calculations

$$Q = CIA$$

Where :

Q = runoff in cubic feet per second (cfs) from a given area.

C= Coefficient of Runoff

I = the time-averaged rainfall intensity (inches/hour) - **24-hr Rainfall**

corresponding to the time of concentration T_c . (See Plates D-3, D-4.1, D-4.3 and D

(See Hydrology Map for L, H and K factors)

A = Drainage area (acres)

[Soils Maps are at:...\\Projects\\150647\\Hydrology\\Plate C-1.42](#)

Return Frequency = **2 years**

PRE-DEVELOPMENT						
Drainage Area	A (acres)	Soils Group	Coefficient C	T_c (min)	$I_{24\ hr}$ (In/hr)	Q (cfs)
1	5.630	D	0.01	21	0.098	0.006
						TOTAL 0.006

Return Frequency = **2 years**

POST-DEVELOPMENT (on-site)						
Drainage Area	A (acres)	Soils Group	Coefficient C	T_c (Final) (min)	$I_{24\ hr}$ (In/hr)	Q (cfs)
1	2.380	D	0.648	9.50	0.098	0.151
2	3.250	D	0.648	8.50	0.098	0.206
						Total 0.358

Commercial Retail Lake Elsinore
- Lake Elsinore
Job No. 1908033
09-13-2019

HYDROLOGY CALCULATIONS

Plump Engineering, Inc.
914 E. Katella Avenue
Anaheim, CA 92805
By: NA

Return Frequency = **10 years**

PRE-DEVELOPMENT						
Drainage Area	A (acres)	Soils Group	Coefficient C	T _c (min)	I _{24 hr} (In/hr)	Q (cfs)
1	5.630	D	0.01	21	0.162	0.009
						TOTAL 0.009

Return Frequency = **10 years**

POST-DEVELOPMENT						
Drainage Area	A (acres)	Soils Group	Coefficient C	T _{c (Final)} (min)	I _{24 hr} (In/hr)	Q (cfs)
1	2.380	D	0.648	9.50	0.162	0.250
2	3.250	D	0.648	8.50	0.162	0.341
						TOTAL 0.591

Return Frequency = **25 years**

PRE-DEVELOPMENT						
Drainage Area	A (acres)	Soils Group	Coefficient C	T _c (min)	I _{24 hr} (In/hr)	Q (cfs)
A	5.630	D	0.01	21	0.201	0.011
						TOTAL 0.011

Return Frequency = **25 years**

POST-DEVELOPMENT						
Drainage Area	A (acres)	Soils Group	Coefficient C	T _{c (Final)} (min)	I _{24 hr} (In/hr)	Q (cfs)
1	2.380	D	0.648	9.50	0.2001	0.309
2	3.250	D	0.648	8.50	0.2001	0.421
						TOTAL 0.730

Runoff Volume Calculations

$$V = \frac{Y \cdot A \cdot P_{24}}{12}$$

Where :

V= Volume in acre-ft.

Y = 24-hour storm runoff yield factor for subarea A

$$= \frac{(P_{24} - I_a)^2}{(P_{24} - I_a + S)P_{24}} \quad \text{Formula C.3}$$

P_{24} = 24-hour storm rainfall from NOAA Precipitation Frequency Server

I_a = initial abstraction

$$= 0.2S \quad \text{Formula C.1}$$

$$S = \frac{1000}{CN} - 10 \quad \text{Formula C.2}$$

A= Drainage area in acres

Return Frequency = 2 Years

PRE-DEVELOPMENT									
Drainage Area	A (acres)	Soils Group	CN AMC II	CN AMC I	S	I_a	P_{24}	Y	V (Ac-ft)
1	5.630	D	75	57	7.54	1.51	2.35	0.04	0.040
									TOTAL 0.040

Return Frequency = 2 Years

POST-DEVELOPMENT									
Drainage Area	A (Acres)	Soils Group	CN AMC II	CN AMC I	S	I_a	P_{24}	Y	V (Ac-ft)
1	2.380	D	90	78	2.82	0.56	2.35	0.29	0.137
2	3.250	D	90	78	2.82	0.56	2.35	0.29	0.188
									TOTAL 0.325

HYDROLOGY CALCULATIONS

Return Frequency = 10 Years

PRE-DEVELOPMENT									
Drainage Area	A (acres)	Soils Group	CN AMC II	CN AMC III	S	I _a	P ₂₄	Y	V (Ac-ft)
1	5.630	D	75	88	1.36	0.27	3.88	0.67	1.23
								TOTAL	1.228

Return Frequency = 10 Years

POST-DEVELOPMENT									
Drainage Area	A (acres)	Soils Group	CN AMC II	CN AMC III	S	I _a	P ₂₄	Y	V (Ac-ft)
1	2.380	D	90	96	0.42	0.08	3.88	0.88	0.68
2	3.250	D	90	96	0.42	0.08	3.88	0.88	0.93
								TOTAL	1.605

Return Frequency = 100 Years

PRE-DEVELOPMENT									
Drainage Area	A (acres)	Soils Group	CN AMC II	CN AMC III	S	I _a	P ₂₄	Y	V (Ac-ft)
1	5.630	D	75	88	1.36	0.27	6.25	0.78	2.28
								TOTAL	2.283

Return Frequency = 100 Years

POST-DEVELOPMENT									
Drainage Area	A (acres)	Soils Group	CN AMC II	CN AMC III	S	I _a	P ₂₄	Y	V (Ac-ft)
1	2.380	D	90	96	0.42	0.08	6.25	0.92	1.15
2	3.250	D	90	96	0.42	0.08	6.25	0.92	1.56
								TOTAL	2.710